aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization

نویسندگان

  • Erika V. Soriano
  • Marina E. Ivanova
  • Georgina Fletcher
  • Philippe Riou
  • Philip P. Knowles
  • Karin Barnouin
  • Andrew Purkiss
  • Brenda Kostelecky
  • Peter Saiu
  • Mark Linch
  • Ahmed Elbediwy
  • Svend Kjær
  • Nicola O’Reilly
  • Ambrosius P. Snijders
  • Peter J. Parker
  • Barry J. Thompson
  • Neil Q. McDonald
چکیده

Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KIBRA Suppresses Apical Exocytosis through Inhibition of aPKC Kinase Activity in Epithelial Cells

Epithelial cells possess apical-basolateral polarity and form tight junctions (TJs) at the apical-lateral border, separating apical and basolateral membrane domains. The PAR3-aPKC-PAR6 complex plays a central role in TJ formation and apical domain development during tissue morphogenesis. Inactivation and overactivation of aPKC kinase activity disrupts membrane polarity. The mechanism that suppr...

متن کامل

Par3 Controls Epithelial Spindle Orientation by aPKC-Mediated Phosphorylation of Apical Pins

BACKGROUND Formation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. ...

متن کامل

Huntingtin Is Required for Epithelial Polarity through RAB11A-Mediated Apical Trafficking of PAR3-aPKC

The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-ba...

متن کامل

Pak1 Kinase Maintains Apical Membrane Identity in Epithelia

Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian...

متن کامل

PAR3 and aPKC regulate Golgi organization through CLASP2 phosphorylation to generate cell polarity

The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016